Hva er Clausura Property? (med eksempler)
den clausurative eiendom er en grunnleggende matematisk egenskap som oppfylles når en matematisk operasjon utføres med to tall som tilhører et bestemt sett og resultatet av den operasjonen er et annet tall som tilhører samme sett.
Hvis vi legger til tallet -3 som tilhører de virkelige, med nummeret 8 som også tilhører de virkelige, får vi som et resultat nummer 5 som også tilhører de virkelige. I dette tilfellet sier vi at den avsluttende eiendommen er oppfylt.
Generelt er denne egenskapen definert spesifikt for settet av reelle tall (ℝ). Det kan imidlertid også defineres i andre sett som mengden komplekse tall eller settet av vektorrom, blant annet.
I settet med reelle tall er de grunnleggende matematiske operasjonene som oppfyller denne egenskapen tillegg, subtraksjon og multiplikasjon.
Når det gjelder divisjonen, oppfylles kun den avsluttende eiendommen under forutsetning av å ha en nevner med en ikke-null-verdi.
Slutt eiendom av summen
Summen er en operasjon ved hjelp av hvilke to tall er forent i ett. Tallene som skal legges til, kalles tillegg, mens resultatet kalles sum.
Definisjonen av den avsluttende eiendommen for summen er:
- Siden a og b er tall som tilhører ℝ, er resultatet av a + b unikt i ℝ.
eksempler:
(5) + (3) = 8
(-7) + (2) = -5
Sluttegenskap til subtraksjonen
Subtraksjon er en operasjon der du har et nummer som heter Minuendo, som utvinnes et beløp som representeres av et nummer som kalles Subtrahering.
Resultatet av denne operasjonen er kjent som Subtraksjon eller Differanse.
Definisjonen av den avsluttende egenskapen for subtraksjon er:
- Siden a og b er tall som tilhører ℝ, er resultatet av a-b et enkelt element i ℝ.
eksempler:
(0) - (3) = -3
(72) - (18) = 54
Lukkegenskaper av multiplikasjon
Multiplikasjon er en operasjon der fra to mengder, en som heter Multiplying og en annen som kalles Multiplikator, er det en tredje mengde kalt Produkt.
I hovedsak involverer denne operasjonen den påfølgende tilsetning av Multiplikasjon så mange ganger som indikert av multiplikatoren.
Den avsluttende egenskapen for multiplikasjon er definert av:
- Siden a og b er tall som tilhører ℝ, er resultatet av a * b et enkelt element i ℝ.
eksempler:
(12) * (5) = 60
(4) * (-3) = -12
Slutt eierskap av divisjonen
Divisjonen er en operasjon der fra et tall kjent som utbytte og en annen kalt divisor, er et annet nummer kjent som kvotient.
I hovedsak innebærer denne operasjonen distribusjonen av utbyttet i like mange like deler som angitt av dividereren.
Clausurativa-eiendommen for divisjonen gjelder bare når nevneren er forskjellig fra null. I følge dette er eiendommen definert som følger:
- Siden a og b er tall som tilhører ℝ, er resultatet av a / b et enkelt element i ℝ, hvis b ≠ 0
eksempler:
(40) / (10) = 4
(-12) / (2) = -6
referanser
- Baldor A. (2005). Algebra. Nasjonal forlagsgruppe. Mexico. 4ED.
- Camargo L. (2005). Alpha 8 med standarder. Redaksjonell Norma S.A. Colombia. 3ed.
- Frias B. Arteaga O. Salazar L. (2003). Grunnleggende matematikk for ingeniører. National University of Colombia. Manizales, Colombia 1ED.
- Kilder A. (2015). Algebra: En matematisk analyse Preliminær til Calculus. Colombia.
- Jimenez J. (1973). Lineær Algebra II med applikasjoner i statistikk. National University of Colombia. Bogotá, Colombia.