Hvordan beregnes gjennomsnittet? (med eksempler)
Begrepet gjennomsnittlig brukes til å referere til gjennomsnittlig antall et sett med tall.
Generelt beregnes gjennomsnittet ved å legge opp alle tallene eller verdiene som presenteres og dele dem med den totale verdien.
For eksempel:
verdier: 2, 18, 24, 12
Summen av verdiene: 56
Divisjon mellom 56 (summen av verdiene) og 4 (total mengde verdier): 14
Gjennomsnitt = 14
I statistikk brukes gjennomsnittet for å redusere mengden data som statsmannen må manipulere, slik at arbeidet er lettere. I denne forstand er gjennomsnittet en syntese av dataene samlet.
I denne disiplinen brukes begrepet "gjennomsnitt" for å referere til forskjellige typer medier, de viktigste er det aritmetiske gjennomsnittet og det veide gjennomsnittet.
Det aritmetiske gjennomsnittet er det som beregnes når alle data har samme verdi eller betydning i statens øyne.
På den annen side er det veide gjennomsnitt det som oppstår når dataene ikke har samme betydning. Eksempler som er verdt annerledes notat.
Aritmetisk middel
Det aritmetiske gjennomsnittet er en type posisjon gjennomsnitt, noe som betyr at resultatet viser sentralisering av dataene, den generelle tendensen til disse.
Dette er den vanligste gjennomsnittlige typen av alle og beregnes som følger:
Trinn 1: Gjennomsnittlig data presenteres.
For eksempel: 18, 32, 5, 9, 11.
Trinn 2: De legger til.
For eksempel: 18 + 32 + 5 + 9 + 11 = 75
Trinn 3: Mengden data som skal gjennomsnittes, bestemmes.
For eksempel: 6
Trinn 4: Del resultatet av summen mellom mengden data som skal gjennomsnittes, og det vil være det aritmetiske gjennomsnittet.
For eksempel: 75/6 = 12, 5.
Eksempler på beregning av aritmetisk middel
Eksempel nr 1 av aritmetisk middel
Matt vil vite hvor mye penger han har brukt i gjennomsnitt hver dag i uken.
På mandag tilbringer jeg $ 250.
På tirsdag tilbrakte han $ 30.
På onsdag brukte han ikke noe.
På torsdag tilbrakte han $ 80.
På fredag tilbrakte han $ 190.
På lørdag tilbrakte han $ 40.
På søndag tilbrakte han 135 dollar.
Verdier til gjennomsnitt: 250, 30, 0, 80, 190, 40, 135.
Totalt antall verdier: 7.
250 + 30 + 0 + 80 + 190 + 40 + 135 = 725/7 = 103, 571428571
I gjennomsnitt brukte Matt 103, 571428571 $ hver dag i uken.
Eksempel nr. 2 av aritmetisk middel
Amy vil vite hva hennes gjennomsnitt er i skolen. Hans notater er følgende:
I litteraturen: 20
På engelsk: 19
På fransk: 18
I kunst: 20
I historien: 19
I kjemi: 20
I fysikk: 18
I biologi: 19
I matematikk: 18
I idrett: 17
Verdier til gjennomsnitt: 20, 19, 18, 20, 19, 20, 18, 19, 18, 17.
Totalt antall verdier i gjennomsnitt: 10
20 + 19 + 18 + 20 + 19 + 20 + 18 + 19 + 18 + 17 = 188/10 = 18, 8
Amys gjennomsnitt er 18, 8 poeng.
Eksempel nr 3 av aritmetisk middel
Clara ønsker å vite hva er hennes gjennomsnittlige hastighet når han kjører 1000 meter.
Tid 1 - 2, 5 minutter
Tid 2 - 3,1 minutter
Tid 3 - 2,7 minutter
Tid 4 - 3,3 minutter
Tid 5 - 2,3 minutter
Verdier til gjennomsnitt: 2, 5 / 3,1 / 2,7 / 3,3 / 2,3
Totalt antall verdier: 5
2, 5 + 3,1 + 2,7 + 3,3 + 2,3 = 13, 9/5 = 2, 78.
Clara sin gjennomsnittlige hastighet er 2,78 minutter.
Vektet gjennomsnitt
Det vektede gjennomsnittet, også kjent som et vektet aritmetisk middel, er en annen type posisjon gjennomsnitt (som søker å oppnå en sentralisert data).
Dette er forskjellig fra det aritmetiske gjennomsnittet fordi dataene som skal gjennomsnittes ikke har samme betydning, så å si..
For eksempel har skoleevalueringer forskjellige vekter. Hvis du vil beregne gjennomsnittet av en rekke evalueringer, må du bruke det veide gjennomsnittet.
Beregningen av det veide gjennomsnittet gjøres på følgende måte:
Trinn 1: Tallene som skal veies sammen med verdien av hver enkelt er identifisert.
For eksempel: En eksamen som er verdt 60% (hvorav 18 poeng ble oppnådd) og en eksamen som er verdt 40% (hvorav 17 poeng ble oppnådd).
Trinn 2: Multipliser hver av tallene med deres respektive verdi.
For eksempel: 18 x 60 = 1080 // 17 x 40 = 680
Trinn 3: Legg til dataene som ble oppnådd i trinn 2.
For eksempel: 1080 + 680 = 1760
Trinn 4: Prosentandelene som angir verdien av hver av figurene, blir lagt til.
For eksempel: 60 + 40 = 100
Trinn 5: Del dataene som ble oppnådd i trinn 3 mellom prosentandelen.
For eksempel:
1760/100 = 17, 6
Eksempel på beregning av vektet gjennomsnitt
Hector har presentert en rekke kjemiske eksamener og vil vite hva hans gjennomsnitt er.
Eksamen nr. 1: 20% av den totale karakteren. Héctor fikk 18 poeng.
Eksamen nr. 2: 10% av den totale karakteren. Hector scoret 20 poeng.
Eksamen nr. 3: 15% av den totale karakteren. Hector scoret 17 poeng.
Eksamen nr. 4: 20% av den totale karakteren. Hector scoret 17 poeng.
Eksamen nr. 5: 30% av den totale karakteren. Hector scoret 19 poeng.
Eksamen nr. 6: 5% av den totale karakteren. Hector scoret 20 poeng.
verdier:
Data # 1
18 x 20 = 360
20 x 10 = 200
17 x 15 = 255
17 x 20 = 340
19 x 30 = 570
20 x 5 = 100
Sum: 1825
Data # 2
20% + 10% + 15% + 20% + 30% + 5% = 100%
gjennomsnittlig
1825/100 = 18, 25
Hectors kjemiske gjennomsnitt på 18, 25 poeng.
referanser
- Gjennomsnitt. Definisjon. Slik beregner du gjennomsnittet. Hentet 1. august 2017, fra statisticshowto.com
- Slik beregner du middelverdien. Hentet 1. august 2017, fra mathisfun.com
- Slik beregner du gjennomsnittet eller gjennomsnittet. Hentet 1. august 2017, fra thoughtco.com
- Math Hjelp. Slik beregner du en gjennomsnittlig. Hentet 1. august 2017, fra youtube.com
- Beregner gjennomsnitt. Hentet 1. august 2017, fra khanacademy.org
- Slik beregner du gjennomsnittet. Hentet 1. august 2017, fra wikihow.com
- Vektet gjennomsnitt. Hentet 1. august 2017, fra investopedia.com
- Slik beregner du vektet gjennomsnitt. Hentet 1. august 2017, fra sciencing.com.